BIKE LAKES

STANDARD BIKE LANE
Bike lanes are marked by striping, signs and pavement markings as an exclusive travel lane for bicyclists.

**Typical Dimensions:** 5' - 8'

**Typical Applications:** Streets with travel speed between 25 - 35 mph. Acceptable traffic volume levels may vary, but most helpful on streets ≥ 3,000 Annual Average Daily Traffic Volume (AADT).

BUFFERED BIKE LANE
Bike lanes fitted with an additional buffer to provide additional “shy” distance between bicyclists and passing traffic.

**Typical Dimensions:** 4' - 5' bike lane paired with 3' buffer

**Typical Applications:** Same as standard bike lanes, but conditions such as traffic speed and volume make additional separation preferable for most bicyclists.

PROTECTED BIKE LANE
Bike lanes that use a physical barrier to create the feel of an off-road bike path within the constraints of an existing roadway. Also known as a “Cycle Track.”

**Typical Dimensions:** 5’ - 8’ bike lane paired with 3’ buffer containing a physical barrier

**Typical Applications:** Roadways with high traffic volumes and speeds where bike lanes are insufficient to alleviate user stress.

COLORED BIKE LANE
Colored treatment can be used on any bikeway to increase its visibility and reinforce yielding to bicyclist in conflict areas.

**Typical Applications:** Areas of frequent conflict between motor vehicles traffic and bicyclists such as intersections and driveways. Also used to deter vehicles from illegally parking in bike lanes.
**SHARED ROADS**

**SHARED LANE**
A method used to designate preferred routes for bicycle traffic. Often employ pavement markings (sharrows) and signs to alert motorists to the presence of bicyclists and to provide wayfinding assistance.

**Typical Applications:** Preferably on low volume roadways (≤ 3000 AADT) with travel speeds ≤ 25 mph. May be used on low volume roadways with travel speeds ≤ 35 mph if space constraints rule out bike lanes.

*Source:* CCCTMA

**BICYCLE BOULEVARD**
Continuous stretches of shared roads that give priority to bicycle travel by removing frequent stopping. Use signs, pavements markings, speed controls and volume management techniques (traffic calming) to discourage motor vehicle through traffic while allowing bicycle through traffic.

**Typical Applications:** Low volume residential streets with travel speeds ≤ 25 mph.

*Source:* CCCTMA

**MULTI-USE TRAIL**
A shared use path separated from motor vehicle traffic by open space or a barrier intended for non-motorized users. Differing uses may be segregated in some cases.

**Typical Dimensions:** 10’ - 15’

**Typical Applications:** Linear corridors within independent rights-of-way with minimal interruptions by motor vehicle traffic (i.e., along waterways or abandoned railbeds).

*Source:* City of Huntsville

**SIDEPATH**
A shared-use path that runs adjacent to the roadway. Unlike sidewalks, sidepaths are designed for bicycle operating speeds.

**Typical Dimensions:** 8’ - 10’

**Typical Applications:** Adjacent to roadways with limited interruptions such as driveways or intersections. Situations where improving the roadway to accommodate bicycle travel is impractical.

*Source:* CCCTMA

---

INTERSECTION TREATMENTS

BIKE BOX
Dedicated areas placed ahead of queuing motor vehicle traffic. They increase a bicyclist’s visibility, facilitate left turning movements, alleviate “right hook” conflicts, and allow them to clear intersections faster.

Typical Applications: Busy signalized intersections where multiple turning movements create conflicts between bicyclists and motor vehicles.

TWO STAGE TURN BOXES
Provide a safe method of making left turns on multi-lane roadways from bikeways located to the right side of traffic (or vice versa). Positioned to the left, or right, of the bikeway to avoid conflicts with bicycle through traffic.

Typical Applications: At signalized intersections or mid-block locations where bicyclists can be expected to turn.

THROUGH BIKE LANE
Allow bicyclists to correctly position themselves to the left of right turning vehicles to avoid “right hook” collisions. Uses pavement markings and signs to alert motorists to yield to merging bicycle traffic.

Typical Applications: At signalized intersections with a right turn lane and a right-side bike lane where bicyclists may be expected to continue straight.

SHARED TURN LANE
Provides the same benefits as a through bike lane in situations where roadway space is constrained. Employs dashed markings, paired with signs, to delineate space for bicyclist within the shared lane.

Typical Applications: Intersections with a right turn lane where space constraints rule out through bike lanes. Not recommended where a high volume of right turning motor vehicle traffic is anticipated.

Bikeway Design Guide

RIGHTSIZING ROADWAYS

ROAD RECONFIGURATION

Reconfiguring the number and/or size of vehicle lanes can rightsize a roadway to better serve the needs of a community and improve safety for all road users.

A typical roadway reconfiguration, or a road diet, involves converting a four lane road into a three lane street (two through lanes and a center two-way left turn lane). This realignment creates room for bike lanes and pedestrian improvements.

APPLICATIONS

Rightsizing may be appropriate on roads that have safety issues or excess capacity. Reconfiguration projects should be coordinated with roadway repaving or reconstruction to minimize costs since many projects only require restriping.

Good Candidates: Four lane roadways with less than 20,000 Annual Average Daily Traffic Volume (AADT) or fewer than 1,700 vehicles per peak hour.

BENEFITS

- Increase roadway safety and access
- Create space for bicycle lanes and/or on-street parking
- Create space for median refuge islands
- Decrease crossing distance for pedestrians
- Center turn lanes reduce likelihood of rear-end and side-swipe crashes
- Improve compliance with speed limit
- Can be tested as trial projects

LANE NARROWING

The suitable width of travel lanes may vary depending on roadway function, vehicle speeds, traffic volumes, and adjacent land uses. Established roadway design guides recognize the need to tailor lane widths to suit local conditions. Narrowing lanes on streets with unnecessarily wide travel lanes can calm traffic, create space for bicycle lanes, and increase safety for all road users.

Typical lane widths: 9’ - 12’
Bikeway Design Guide

RIGHTSIZING ROADWAYS

ROAD RECONFIGURATION

Reconfiguring the number and/or size of vehicle lanes can rightsize a roadway to better serve the needs of a community and improve safety for all road users.

A typical roadway reconfiguration, or a road diet, involves converting a four lane road into a three lane street (two through lanes and a center two-way left turn lane). This realignment creates room for bike lanes and pedestrian improvements.

APPLICATIONS

Right-sizing may be appropriate on roads that have safety issues or excess capacity. Reconfiguration projects should be coordinated with roadway repaving or reconstruction to minimize costs since many projects only require restriping.

Good Candidates: Four lane roadways with less than 20,000 Annual Average Daily Traffic Volume (AADT) or fewer than 1,700 vehicles per peak hour.

BENEFITS

- Increase roadway safety and access
- Create space for bicycle lanes and/or on-street parking
- Create space for median refuge islands
- Decrease crossing distance for pedestrians
- Center turn lanes reduce likelihood of rear-end and side-swipe crashes
- Improve compliance with speed limit
- Can be tested as trial projects

LANE NARROWING

The suitable width of travel lanes may vary depending on roadway function, vehicle speeds, traffic volumes, and adjacent land uses. Established roadway design guides recognize the need to tailor lane widths to suit local conditions. Narrowing lanes on streets with unnecessarily wide travel lanes can calm traffic, create space for bicycle lanes, and increase safety for all road users.

Typical lane widths: 9’ - 12’